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Abstract—Image inpainting methods generate alternative con-
tent by harnessing similarities from neighboring pixels. However,
as the invisible region becomes larger, completed pixels in a
deeper hole have difficulty in inferring from the surrounding
pixel signals, easily leading to visual artifacts. To help fill this
void, we adopt an alternative progressive hole-filling scheme
that hierarchically fills the corrupted region in the feature
and image spaces. This technique allows us to utilize reliable
contextual information of the surrounding pixels, even for large
hole samples, and then gradually complete the details as the
resolution increases. To more realistically represent the completed
region, we devise a pixel-wise dense detector. By distinguishing
each pixel as a masked region and passing the gradients to all
resolutions, the generator further reinforces the potential quality
of the synthesis. The completed images of different resolutions
are then merged using a structure transfer module (STM) that
preserves the global continuity. By comparing our solutions
qualitatively and quantitatively with state-of-the-art methods, we
conclude that our model exhibits a significantly improved visual
quality, even in the case of large holes.

Index Terms—Image inpainting, Image completion, Free-form
inpainting, Object removal, adversarial learning

I. INTRODUCTION

IMAGE inpainting is a technique of composing missing
parts into an alternative content with visually plausible

quality. Although this is one of the challenging tasks in
computer vision owing to the inherent ambiguity of natural
images, it is an essential functionality deployed in various
image processing and graphic applications, for example, object
removal, image restoration, manipulation, retargeting, com-
positing, image-based rendering [1]–[3], and computational
photography [2], [3].

Existing inpainting methods can be categorized into two
approaches. The first approach is called “fill through copying”,
which attempts to explicitly borrow content or textures from
the surroundings to fill in the missing region. According to
the content propagation type, these methods can be divided
into diffusion-based [4]–[7] and patch-based [8] algorithms.
Such conventional methods often achieve a texture synthesis,
although the main problem is related to an understanding of
image semantics to capture a global structure. Owing to a
decade of advances in convolutional neural networks (CNNs),
the second approach attempts to learn the implicit distribution
of the image in a data-driven manner, which we call “fill
through modeling”. This approach usually utilizes an encoder-
decoder pipeline, which assumes that the network should cap-
ture both high-level semantics and low-level details at the fea-
ture level [9]–[13]. However, as the invisible region becomes
larger, this assumption loses its validity because of the weak

interrelationship between neighboring pixels. To cope with
this, advanced attempts have been made to employ an attention
module aiming to transfer long-range coherency between the
visible and invisible regions [10], [12]–[14]. Despite the slight
improvement, the simple attention mechanism is insufficient
to propagate semantics because this method requires roughly
completed features that are not guaranteed in the large hole
case. Therefore, most state-of-the-art methods adopt an alter-
native scheme that fills the hole from the boundary to the
center recursively [15], [16]. Unfortunately, these recursive
processes easily lead to structural discontinuities owing to the
straightforward mapping process from the abstracted feature
to the image domain (i.e., RGB space) iteratively.

Essentially, the painting process is first built up of globally
sketched semantics and the entire details are then filled in
while considering the global-local continuity and consistency
[5], [17]. Similarly, the image inpainting process should simul-
taneously reflect both high-level semantics and fine low-level
details. To reflect the inherent nature of painting in image
inpainting works, we devise a novel framework called pro-
gressive inpainting. In particular, this framework is remarkable
when the three proposed networks (i.e., progressive generator,
pixel-wise dense detector, and merge block) cooperate with
each other to boost the capacity of reconstruction. The pro-
gressive restoring network (PRN) fills in the hole by gradually
enlarging the resolution, which is inspired by the recent
success of the progressive growing technique in the image
generation fields [18]–[20]. As the key insight, the model
organizes the global semantics from the low-resolution image
prior, and then restores the fine details across different multi-
scale resolutions. Fig. 1 shows examples of our completed
results. As can be seen, even a large hole is gradually filled
with a pleasing quality.

Toward this entire success of the progressive hole-filling
scheme, an intermediate completion at each step has to inten-
sify the texture details to convey wealth information across
different resolutions. Here, the discriminator usually benefits
the generator in terms of synthesizing more natural images
[21], [22]. Because the discriminator focuses on distinguishing
an image as real or fake in a holistic manner, the adversarial
loss penalizes the generator, which is biased toward the most
discriminative part (i.e., a global context) rather than the
newly generated region. Thus, the discriminator commonly
misses the fine details of the local region. The problem
is amplified when the discriminator has to learn in a non-
stationary pattern, such as an irregular hole-filling task. In this
case, the position and size of the hole dynamically vary during
the training procedure, which makes the generator prone to
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Fig. 1. Results of our method on a face, building, and natural scenery with various masks (missing region shown in white). For each group, the resolution
of the generated images increases toward the right reaching the final output without post-processing (please zoom in to see the details).

forget the previous knowledge. Therefore, the discriminator is
not incentivized to maintain a more powerful representation,
learning both global and local image differences.

To resolve this issue, we propose a novel pixel-wise dense
detector (PWDD) that efficiently penalizes the generator to
enhance the quality of the newly generated region by acting
as a discriminator. Here, the PWDD takes the role of both
the global supervisor and the per-pixel classifier applicable to
arbitrary holes. The global supervisor learns a representation
that allows the regulation of the generator based on the most
discriminative parts between the target and synthetic images,
as in the standard adversarial loss setting. By contrast, the
per-pixel classifier attempts to distinguish between the real
and fake at the pixel level. Motivated by the U-Net based
discriminator [22], we first cut out the synthetic pixels from
the hole region and mix these pixels into the target image
in the same region. Then, the binary mask maps are spatially
combined with respect to the real and fake pixels. Empowered
by a per-pixel feedback, we employ a pixel-wise segment map
for consistency regularization, penalizing inconsistent predic-
tions. These changes promote the PWDD to focus more on the
semantic and structural changes by encouraging an invariant
prediction to the perturbation of the mask type. Therefore, the
overall visual quality can be dramatically improved.

To further ensure the final quality of the progressive inpaint-
ing, we should address the structural discontinuity arising from
recursive feature mapping to the image domain. To this end,
we propose a merge block that blends the completed multi-
resolution images. Directly applying an in-network upscaling
for the merge block is improper because these easily fail
to capture long-range dependency over different resolutions,
which leads to a semantical ambiguity. In this context, our
merge block uses the structural transfer module (STM) to learn
the region affinity between neighboring resolutions. Unlike
the existing attention module [10], [23], the STM is utilized
at different resolutions as a query, key, and value to enable
scale-to-scale information transfer. Leveraged by the merge
block, the level of structural consistency is enhanced in the
final completed image.

In short, our main goal is to fill an extremely large hole

while guaranteeing a visually plausible quality. To this end,
the following three novel components comprising the proposed
inpainting framework outperforms the other counterparts.

1) We design a progressive generator that transfers a
roughly completed context to the missing pixels of the
neighboring resolution to guide semantically coherent
hole-filling across the multi-scale image.

2) We newly devise the PWDD to reinforce the potential
quality over the completed region by identifying whether
the pixel is masked, and by passing the gradients to all
different resolutions.

3) We introduce the merge block that combines the com-
pleted images in multiple resolutions through consecu-
tive STMs that transfer the region affinity features to the
next resolution activation volumes.

The remainder of this paper is organized as follows. Section
II introduces related works to review the latest algorithms. We
describe the progressive inpainting, including the detailed ar-
chitecture of the proposed model and the training procedure in
Section III. In Section IV, we conduct extensive experiments to
validate our state-of-the-art performance on multiple datasets.
Finally, conclusions are provided in Section V.

II. RELATED WORK

Traditionally, numerous image inpaintings have focused on
propagating information from visible parts [1], [4], [5], [24],
[25]. More recently, many researchers have utilized large im-
age datasets to generate semantically consistent content by ap-
plying adversarial training. Therefore, most image inpainting
methods produce a realistic image from a given corrupted input
by defining it as a conditional generative problem. The context
encoder is one of the early attempts to generate reasonable
results based on feature learning [9]. In this case, the model
was trained using the pixel-to-pixel loss and adversarial loss
to restore the corrupted region.

A. Contextual Attention

Yu et al. [10] devised two consecutive learning systems that
generate an initial coarse prediction and refine the missing
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region using the contextual attention layer, which computes
the long-range spatial dependency during inpainting. Contex-
tual attention propagates information from the background to
foreground features through feature matching and aggregation
phases. Shin et al. [11] offered a single shared contextual
attention layer to create a lightweight network. Zeng et al.
[26] extended this idea to multiple layers by using a pyramid
of contextual attention. Instead of borrowing the long-term in-
teraction capabilities of the attention module, Wang et al. fully
utilize the information in the known area by distinguishing the
corrupted region from the valid ones [27]. However, it is still
inferior to filling the center of the large hole with coherent
content.

B. Coarse-to-Fine Inpainting

Evolving from the above approaches, numerous studies have
attempted to use the coarse result of the intermediate network
as explicit guidance. Nazeri et al. [12] utilized a planar
structure to rectify persceptively distorted textures. They first
recover the edge maps and then filled in the missing regions
with fine details. In addition, Xiong et al. [14] proposed a
foreground-aware method that infers the contour of saliency
objects in a coarse-to-fine fashion. Ren et al. [13] proposed a
StructureFlow that restores edge-preserved smooth images and
then reconstructs the texture details. With the recent success
of coarse-to-fine inpainting methods, Lin et al. has extended
the multi-stage inpainting methods to outpainting work [28].
Inspired by EdgeConnect [12], Lafin [29], and semantic re-
generation network [30], they propose a 3-stage completion
framework that contains an edge-generator. However, due to
the limited representation ability to fill in the large hole,
these methods may fail to infer the missing pixels conditioned
through valid pixels. Rather than complete coarse information
such as edge map and flow map from the corrupted images,
Liao et al. introduce coherence prior by characterizing the re-
lationships between the semantics and textures [31]. Although
these methods have delivered considerable improvements, they
remain suboptimal for a prior representation as they mapped
the limited relationships between the textures and edges.

C. Recursive Inpainting

Image inpainting methods have recently adopted a recursive
hole-filling scheme to cover a large hole. Zhang et al. [16]
employed a UNet generator with an LSTM in a bottleneck.
It takes a sequence of inputs with a large to small hole
and generates a sequence of corresponding outputs. Guo et
al. [15] proposed consecutive residual blocks to fill the hole
gradually. They used partial convolutions [32] in these blocks
and updated the hole mask according to the invalid pixels
selected by partial convolutions. Similarly, Li et al. [33] pro-
posed recurrent feature reasoning propagating the confidence
region from the boundary to the center within the feature
space. However, the recursive process has an unacceptably
high computational cost, and recursive feature mapping results
in a structure discontinuity output.

D. Pluralistic Image Inpainting

Starting from the “Pluralistic Image Completion” [17], di-
verse image inpainting task, which provide multiple solutions,
has developed tremendously in the computer vision literatures.
To obtain a diverse set for each masked input, Zheng et al.
[17] propose a dual pipeline architecture implicitly modeling
the data distribution by adopting the variational autoencoder
framework [34]. Inspired by this work, Zhao et al. maps
both features from the corrupted image and reference image
into the same probabilistic space to achieve diversities [35].
However, variational training restricts diversity and the images
completed through sampling does not change continuously. To
this end, Liu et al. designs probabilistic diverse [36] by adopt-
ing a GAN framework [37], Wan et al. borrows transformer
[23] representation ability to model a coarse global structure
[38]. In our view, the main stream of image painting seems to
be divided into two ways: providing a detailed deterministic
solution through long-term interactions and providing a diverse
solutions through noise sampling. Our attempt is closer to the
former methods.

E. Discriminator for Image Synthesis

For plausible image synthesis, the adversarial loss has
recently shown impressive results in various computer vision
tasks. They mainly focus on improving the discriminator by
utilizing multiple [16], [39] and multi-resolution discriminator
[20]. However, these methods only allow global feedback
of the discriminator scores. To this end, Schonfeld et al.
devises a u-net based discriminator that also provides global
image feedback [22]. In image inpainting literature, there also
have been attempts to improve the discriminator ability by
focusing more on the newly generated region. In an early
attempt, Iizuka et al. [21] proposed two discriminators that
enforce both global and local consistencies. Shin [11] devised
a region ensemble discriminator (RED) to integrate global
and local discriminators. However, it is insufficient to pro-
vide semantically aware pixel-level feedback to the generator.
As the role of a discriminator in image synthesis becomes
important, Zhang et al. proposes pixel-wise dense detector
inspired by [40]. Utilizing the adversarial loss, they localize
the position of artifacts in a pixel-wise manner. In our work,
we incorporate a pixel-wise feedback framework to the multi-
resolution discriminator by scoring the confidence values to
reinforce the potential quality of synthesis.

III. PROPOSED METHOD

For a better understanding of our proposed framework, we
define the following notations:
• Let x = {x1, ..., xN} be the multi-resolution target image

set where xn represents the nth downsampled version of
the original target image x0 by a factor of rn (r > 1),
and N is the total number of resolutions.

• Let m = {m1, ...,mN} denotes the multi-resolution
binary mask set where the labels “0” and “1” represent
the missing region and context, respectively. Here, mn

represents the down-sampled version of the mask m0 by
a factor of rn, for some r > 1.
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Fig. 2. Illustration of the progressive inpainting pipeline. The model fills
the hole from the coarsest to the finest resolution, and the completed images
across the different resolutions are then refined passing through the merge
block.

• The multi-resolution corrupted image set x̄ =
{x̄1, ..., x̄N} at the corresponding stage is represented as
x̄n = xn �mn, where � is the Hadamard product.

A nearest neighbor interpolation was used for down-sampling.
To create a valid binary mask, after down-sampling, we round
the values.

The proposed progressive inpainting consists of two main
modules: PRN and PWDD. The PRN is responsible for
completing invisible parts across different resolutions in both
the image and feature spaces. The quality of the generated
images is further reinforced using the PWDD. By estimating
the confidence score at each pixel, the adversarial loss helps
the PRN to focus more on the newly completed region. The
merge block then blends the generated images to refine the
structural discontinuity, as depicted in the lower part of Fig.
2. In Section III-A, we describe the overall workflow of the
proposed model, and in Section III-B, we present our objective
function in the training procedure.

A. Overall Workflow

1) Progressive restoring network: Fig. 2 shows the PRN
pipeline where FromRGBN takes the lowest corrupted image
x̄N and produces feature maps wN passing through an initial
generator block GN . Then, ToRGBN completes the hole and
produces an initial generated image x̃N , which is defined as
follows:

x̃N = ToRGBN (gN ), (1)
where gN = GN (wN ),

and wN = FromRGBN (x̄N ), x̄N ∈ R16×16×3.

To preserve semantic level consistency, the previously gen-
erated image substitutes the invisible region of the adjacent
resolution, and then feeds into the FromRGBn as shown in

Fig. 3. (a) Details of the up-sample block. (b) The replaced images embedded
in the main body of the up-sample block by adopting a SPADE.

Fig. 3 (a). Thus, the activated feature map wn is formulated
as follows:

wn = FromRGBn(x̄n + x̃n+1 ↑r � (1−mn)), n < N. (2)

Then, wn is embedded in the main body of the up-sample
block. Here, we denote each up-sample block attribute to
the PRN as {G1, ..., GN−1}. To transfer wn to the main
body of the up-sample block Gn, we leverage a spatially
adaptive denormalization (SPADE) [41], which is generally
utilized to modulate a local feature for an image synthesis. The
mathematical expression is briefly summarized as follows:

SPADE(gn+1, γn, βn) = γn
gn+1 − µn+1

σn+1
+ βn, (3)

where gn+1 is the activation that comes from the previous
up-sample block Gn+1 and, µn+1 and σn+1 are the mean
and standard deviation of gn+1, respectively, as shown in
Fig. 3 (b). We compute the spatially invariant modulation
parameters γn and βn from wn which are the learnable tensors
of the normalization layer. By employing the SPADE layers,
abnormal spatial information is recalibrated at the feature
level.

After passing through each up-sample block Gn, the re-
calibrated features gn are fed into ToRGBn to generate the
completed image at each resolution:

x̃n = ToRGBn(gn), (4)
where gn = Gn(gn+1, wn) and n < N.

The key motivation of the PRN is to transfer intermediate
features to neighboring scales and to fill in the invisible parts
in a consecutive manner. Using such a method, both visual and
contextual coherence, which have to be implied in the invisible
region, can be effectively recovered. In our implementation,
both FromRGBn and ToRGBn consist of a single convolution
layer followed by a nonlinear function.

2) Pixel-wise dense detector: Toward a more pleasing im-
age inpainting, we use a newly formulated adversarial training
scheme. Beyond a simple feedforward design of a conventional
discriminator, the proposed method adopts multiple skip con-
nection blocks following the MSG-GAN [20]. Thus, we can
use a single discriminator that allows the gradients to flow
at multiple resolutions simultaneously. By contrast to MSG-
GAN, the proposed discriminator enables the determination of



5

Fig. 4. Illustration of the PWDD pipeline. The PWDD determines the input
images on a global and local scale at the pixel level.

both global critics and pixel-level classification, which forces
the PRN to focus intensively on the invisible hole. Fig. 4
illustrates the overall architecture of the PWDD.

We denote each down-sample block in the PWDD as
{D1, ..., DN}. These blocks are designed similar to the up-
sample block, but the SPADE is removed, and the last layer
is replaced with an average pooling layer. Let dn−1 and w̃n
represent the (n − 1)th intermediate features of the PWDD
and the embedded features from x̃n, respectively. The output
activation volume dn of the nth intermediate layer is defined
as follows:

dn = Dn(dn−1; w̃n), (5)
where w̃n = FromRGBn(x̃n) and n > 1.

In Eq. 5, “; ” denotes the channel-wise concatenation operator.
The proposed method additionally estimates the confidence
score for whether each pixel belongs to the masked region.
To achieve this, we define the ToConfn block to segment
the confidence map at the pixel level by considering the
intermediate features of each resolution. Therefore, confidence
map cn is represented as follows:

cn = ToConfn(dn−1; w̃n), n > 1. (6)

The optimization process using the confidence map is a fully
self-supervised learning method in which the visible pixels
are intended to be true values, and the invisible pixels become
false through an adversarial loss. The implications of adding
a per-pixel critic are discussed in Section III-B.

3) Merge Block: To address the structural discontinuities
caused by a recursive feature mapping in the PRN, we blend
the completed multi-resolution images by consecutively prop-
agating the global structure across different resolutions. The
merge block explicitly transfers the contextual representations
from the low-resolution completed image into the spatially
corresponding positions of the high-resolution completed im-
age, as shown in Fig. 5 left. The self-attention mechanism

[10], [23] has been applied as a paradigm capturing long-range
interactions between an input and the contextual character-
istic. However, the quadratic memory footprint has hindered
its applicability in the transfer of scale-to-scale information.
For example, applying a single multi-head attention layer to
images with a pixel resolution of 128 × 128 with 8 batches
still requires more than 32GB of memory, which is generally
impractical.

To propagate the long-range interaction between adjacent
resolutions, the proposed STM transforms the contexts lying
in a low-resolution into individual linear functions, which are
directly applied to an adjacent higher resolution as a query.
The STM is a modified version of the lambda network [42].
The right side of Fig. 5 depicts the details of the STM. Let
us denote x̃ : {x̃1, x̃2, ...x̃N} as a sequence of the generated
image set. First, we encode high-level structural inputs through
convolutional filters s : {s1, s2, ...sN} (sn ∈ R(Hn×Wn)×Mn),
where Hn and Wn are the height and width of the kernel at
the nth level, and Mn is the number of embedding dimensions
used to represent each entity. By contrast to conventional
attention [10], [23], the STM maps an upper-resolution query
qn to its output pn through matrix multiplication as pn =
λn(pn+1)(qn) for a certain linear function λn. Such a process
can be achieved by defining three learnable weight matrices to
transform the queries wqn ∈ RMn×Kn , keys wkn ∈ RMn×Kn ,
and values wvn ∈ RMn×Un .

Given sN , the corresponding output is represented by pass-
ing through a single convolutional layer, which is defined as
λN : sN 7→ pN , where pN ∈ R(HN×WN )×MN . Subsequently,
the STM first up-samples the lower-resolution context pn+1

and then calculates keys and values through a linear projection
to wkn and wvn. These are formulated as follows:

kn = (pn+1 ↑r)wkn ∈ R(Hn×Wn)×Kn , (7)

vn = (pn+1 ↑r)wvn ∈ R(Hn×Wn)×Un . (8)

Here, we adopt the pixelshuffle (depth to space) technique
[43] to up-sample its resolution which results in the output
(pn) ↑r∈ R(2Hn+1×2Wn+1)×(Kn+1/4). Subsequently, keys are
normalized across the context positions through a softmax
function, yielding the normalized keys k̄n. The linearly es-
timated context λn is obtained by summing the contributions
from the keys and values as:

λn =
∑
i

k̄n(i)T vn(i) ∈ RKn×Un , (9)

where i is the region belonging to (Hn ×Wn). To apply λn,
the higher resolution input sn is transformed into queries such
that qn = snw

q
n ∈ R(Hn×Wn)×Kn and the output of the STM

is then obtained as:

pn = qnλn + q̃n ∈ R(Hn×Wn)×Un , (10)

where q̃n is the skip connection of a single convolution layer
to fit the final dimension of the channels.

As shown on the left-side of Fig. 5, after the merging
process with the sequentially connected STM chains, the final
context map p0 is obtained. Using the enhanced context map,
the final output x̃out is reconstructed using ToRGBM as:

x̃out = ToRGBM (p0). (11)
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Fig. 5. Illustration of the merge block pipeline. The multi-resolution completed images are merged passing through STM (left). The STM layer transforms
each context into a linear matrix that is applied to the corresponding query (right).

Note that the weight parameters of each merge block are
not shared. In our implementation, W q

n , W k
n , and W v

n are
calculated using a 1× 1 convolution filter.

B. Loss Functions

The proposed progressive architecture is simultaneously
trained from the lowest to the finest resolution in an end-to-
end manner. The objective function comprises adversarial and
appearance-matching terms,

min
G

max
D
Ladv(G,D) + λLapp(G). (12)

The adversarial loss Ladv penalizes the inconsistency between
the distribution of the generated images and the distribution
in which the training set is drawn. The appearance matching
loss Lapp makes the model preserves the visible region , fills
in the corrupted region, and is able to produce an important
feature for semantic consistency.

1) Adversarial loss: While the general discriminator classi-
fies the input images into real and fake, the PWDD additionally
applies binary classification on a per-pixel basis (see Fig. 4).
By separating the newly generated image into visible and
invisible regions, this adversarial loss allows the progressive
generator to learn the hallucinating context features.

Hereafter, we denote DG as the module of the global
supervisor and Dn

P as the module of the nth per-pixel clas-
sifier, that is, the set of confidence maps is represented as
c : {c1, c2, ...cN} = {D1

P (x), D2
P (x), ...DN

P (x)}. Inspired by
[26], we adopt the hinge version of the adversarial loss to work
around the gradient vanishing problem. The new discriminator
loss can now be formulated by taking decisions from both DG

and DP :
LD = LDG

+ LDP
. (13)

The loss for the global supervisor LDG
follows a conventional

discriminator loss:

LDG
=− E

[∑
i,j

min(0,−1 + [DG(x)]ij)
]

(14)

− E
[∑
i,j

min(0,−1− [DG(x̃)]ij)
]
,

where [DG(x)]ij and [DG(x̃)]ij are the decisions of the
discriminators on the target and generated images at pixel

(i, j), respectively. To focus more on the newly generated
region across the different resolutions, the visible part of the
generated image x̃n is mixed with the corresponding target
region xn with the mask mn:

x̃mixn = mix(x̃n, xn,mn), (15)
= x̃n �mn + xn � (1−mn).

The mixed sample x̃mixn , mn acts as the ground-truth for the
corresponding pixel of Dn

p by discriminating whether the pixel
belongs to the masked region. To do this, the loss for the per-
pixel classifier LDP

is computed as follows:

LDP
=− E

[ N∑
n=0

∑
i,j∈Rn

min(0,−1 + [Dn
P (x̃mixn )]ij)

]
(16)

− E
[ N∑
n=0

∑
i,j /∈Rn

min(0,−1− [Dn
P (x̃mixn )]ij

]
,

where Rn is the visible region, which is denoted as “1” in
binary mask mn. These multi-resolution per-pixel outputs of
DP are derived from global information based on high-level
features, which enable the passage of gradients to all resolu-
tions. The corresponding adversarial losses for the generator
are as follows:

Ladv = −E
[∑
i,j

[DG(x̃)]ij +

N∑
n=0

∑
i,j /∈Rn

[DP (x̂mixn )]ij

]
. (17)

Furthermore, we add consistency regularization to the
PWDD. The pixel-wise decision by the well-trained Dp

might be stabilized even under any perturbation of the mask.
However, the adversarial loss is implicitly assured and the
generator is prone to forget the previous task. To explicitly
encourage the PWDD, we regularize the confidence map to
sense semantic and structural changes between visible and
invisible regions, and to pay less attention to arbitrary irregular
masks. Similar to the U-Net based discriminator [22], we train
the PWDD to output consistent per-pixel predictions, that is,
Dn
p (x̃n·mn+xn·(1−mn)) ' Dn

p (x̃n)·mn+Dn
p (xn)·(1−mn),
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by introducing consistency regularization in the loss of the
discriminator:

LconsDp
=

N∑
n=0

∥∥∥[Dn
p (x̃n ·mn + xn · (1−mn))

]
− (18)

[
Dn
p (x̃n) ·mn +Dn

p (xn) · (1−mn)
]∥∥∥

2
.

Finally, we add a consistency loss in Eq. 13:

LD = LDG
+ LDP

+ λcLconsDP
. (19)

Empirically, we set the weighting hyperparameter λc as 0.1.
2) Appearance matching loss: With appearance matching

loss, the aforementioned objective loss acts as a per-pixel
reconstruction, although it can also maintain semantic con-
sistency over the completed image. As such, we define the
per-pixel losses for the global consistency, which are separated
into visible loss Lv = E[

∑N
n=0

1
Nn
‖mn � (xn − x̃n)‖1] and

hole loss Lh = E[
∑N
n=0

1
Nn
‖(1 − mn) � (xn − x̃n)‖1],

where Nn denotes the number of elements in xn. For the
final output x̃out, the reconstruction loss is expressed as
Lr = E[ 1

N0
‖x0 − x̃out‖1].

Next, we include the perceptual and style loss terms, which
are widely utilized in the image inpainting task as in [12],
[32], [44]. Perceptual loss is defined as the distance between
the activation maps of the pre-trained VGG-19 network:

Lp = E
[∑
m

1

Nm
‖φm(x0)− φm(x̃out)‖1

]
, (20)

where φm is the mth feature map of the pre-trained network
(i.e., ReLu1 1, ReLu2 1, ReLu3 1, ReLu4 1 and ReLu5 1),
and Nm denotes the number of elements in the feature map.
The style loss is defined using a difference measure between
the covariances of the activation maps. Let the Gram matrix
Gφm operation be Cm × Cm from the feature map φm. This
term is represented by the following:

Ls = E
[∑
m

1

Nm
‖Gφm(x0)−Gφm(x̃out)‖1

]
. (21)

Finally, our appearance matching loss is given by

Lapp =λvLv + λhLh + λrLr + λpLp + λsLs, (22)

where the hyperparameters are determined empirically, (i.e.,
λv , λh and λr are set to 250, λp is 0.1 and λs is 180).

IV. EXPERIMENTS

A. Implementation Details

Datasets: Experiments are conducted on three commonly
utilized datasets adopted in studies on image inpainting:
Places2 [45], Paris StreetView [46], and CelebA-HQ [18]. We
also adopt an external irregular mask dataset [47] to corrupt the
target images. For fair comparisons, the same dataset setting
is applied to our experiments and counterparts.
• Places2: A dataset containing over 1.6 million training

images from 365 scene categories, which is extremely
suitable for natural image inpainting as it enables the
model to learn many different scenes. We follow the
provided training, testing, and validation splits.

• Paris StreetView: A dataset containing 14, 900 training
images and 100 test images collected from the street
views of Paris, which mainly focuses on buildings and
structure information.

• CelebA-HQ: A dataset containing 30, 000 celebrity facial
images. We randomly divide the images into 90% for
training and validation and 10% for testing.

• Masks: The mask is automatically generated during the
training procedure following the free-form mask algo-
rithm [48], which draws multiple lines and then erases
pixels closer than an arbitrary distance from the lines.
For the test, we employ an irregular mask dataset [47]
that covers different hole-to-image area ratios.

Training Procedure: Images with a resolution of 256×256
are utilized to train the proposed model. The color values of
all images are linearly scaled to [−1, 1] during all experiments.
The scale of the multi-resolution images to be input into
the PRN is set from 4 to 6 and the optimal N , the size of
the lowest-resolution image, is set from 32 × 32 to 8 × 8.
Then, the PWDD takes the same scale as the multi-resolution
images as the PRN receives. Before the training procedure,
we initialize all weights of the network using the normalized
distribution N (0, 1). We conduct the optimization using the
Adam optimizer [49] with (β1, β2) = (0.0, 0.99) for both
the generator and discriminator. We set the learning rate to
λg = 1e−4 for the generator which is then decreased by one
order to λd = 1e−1 · λg for the discriminator because it is
easy to distinguish whether the image is real or fake during
the early training stage, resulting in unstable training [20].

The spectral normalization (SN) [50] is used to stabilize
our model by scaling down the weight metrics with their
largest singular values. Owing to the SN, both the PRN and
PWDD are free from sudden changes in the parameters and
gradient values. In general, SN has been widely applied in
discriminators [50], [51]; however, we utilize it in a generator
inspired by a recent study [52], which suggests that the
generator profoundly benefits by limiting the sudden change
in trainable parameters and gradient values.

Furthermore, we adopt a coordinate convolution [53] to the
generator, which allows networks to learn either a complete
translation invariance or varying degrees of translation depen-
dency. This method is used to capture detailed information
dependent on the local regions because the mask is randomly
positioned over the target image in the training process. The
entire training procedure is presented in Algorithm 1. Our full
model is trained using a single GPU RTX 2080 Ti and powered
in PyTorch v1.3.

Comparison Models: We compare our proposed model
with four existing state-of-the-art image inpainting methods.
We choose the EdgeConnect [12], Partial Convolution (PConv)
[32], Gated Convolution (GatedConv) [48], and Recurrent Fea-
ture Reasoning (RFR) [33] for the qualitative and quantitative
comparisons. These models are re-trained until convergence
following the same experimental settings proposed in each
study.
• EdgeConnect: This method first provides edge informa-

tion of the missing region and recovers color and texture
information by utilizing the generated edge information.
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Algorithm 1: Training of our proposed network
Inputs : x̄ : {x̄1, x̄2, ..., x̄N}, Corrupted images;

m : {m1,m2, ...,mN}, Masks;
Outputs: x̃ : {x̃1, x̃2, ..., x̃N}, Outputs from the PRN;

c : {c1, c2, ..., cN}, Confidence maps;
x̃out, Outputs from the merge block;

1 initialization;
2 while PRN has not converged do
3 for n=N,N-1,...1 do
4 if n=N then
5 x̃n ← PRNn(x̄n);
6 else
7 x̃n ← PRNn(x̄n + x̃n+1 ↑r �(1−mn));
8 end
9 end

10 critics, c← PWDD(x) or PWDD(x̃);
11 x̃out ← MergeBlock(x̃);
12 Updating the PWDD with loss LD;
13 Updating the PRN and MergeBlock with loss

Ladv + Lapp;
14 end

• PConv: This method is a classic approach that allows
irregular hole filling by applying a novel convolutional
layer that is aware of the mask shape and addresses the
inductive locality problem of the inpainting.

• GatedConv: This method addresses the issue of a vanilla
convolution by generalizing the PConv using a learnable
dynamic feature selection mechanism.

• RFR: This method is devised to cover the large contin-
uous hole filling scenarios by recurrently inferring the
hole boundaries of the convolutional feature maps and
then uses them as clues for further inference.

B. Performance Evaluation

Qualitative Comparisons: To demonstrate the superiority
of the proposed method, we report the notable results to
address the challenging problem in image inpainting studies,
which hides most of the visible region by employing an
extremely large hole. Figs. 6, 7, and 8 illustrate the completed
outputs of the progressive inpainting with our previously
described counterparts on the Places2, Paris StreetView, and
CelebA-HQ datasets, respectively. EdgeConnect, PConv, and
GatedConv perform well when the missing region is small and
narrow (please refer to the studies of each method [12], [32],
and [48]), but they have serious artifacts as the missing region
becomes larger for all datasets.

Compared to the other methods, RFR, which adopts a
recurrent hole-filling scheme, generates more semantically
plausible results even in a large missing region. However,
RFR occasionally produces a blurry texture in a heterogeneous
region with high-frequency components. This implies that the
RFR is vulnerable to the creation of alternative contextual
details while maintaining structural consistency. With the help
of a progressive hole-filling scheme and cross-scale STM, our
model generates more semantically reasonable and visually

TABLE I
STATISTICS OF USER STUDY. THE VALUE INDICATES THE RANK

PERCENTAGE.

Method EdgeConnect PConv GatedConv RFR Ours
percentage 10.48% 3.01% 7.88% 33.85% 44.78%

plausible results with clear textures and consistent structures,
even in cases of an extremely large hole.

To further validate our superiority, we conducted a user
study. We randomly collected 1, 000 images from Places2
and corrupted more than 60% of the visible regions using
the test mask dataset. These corrupted images are completed
from different models, for example, EdgeConnect, PConv,
GatedConv, RFR, and Progressive Inpainting, and then shown
to the volunteers anonymously. Over 20 volunteers are invited
to evaluate the performance of the models and asked to choose
the image that seems the most natural. Table I shows the
statistical results for the votes. Our model is ranked better
than the other models, and we can find that people prefer
structurally clearer results than textual details.

Quantitative Comparisons: We conduct quantitative com-
parison in terms of the mean l1, peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and Fréchet Incep-
tion Distance (FID) [54]. The first three metrics, e.g. mean l1,
PSNR and SSIM, assume pixel-wise independency, which may
mark favorable scores to perceptually unreasonable results.
Therefore, we employ the FID, which calculates the distance
between the feature vectors calculated for the target and
generated images using a pre-trained inception-V3 model [55].
Note that these statistics rely on the completed image, which
mostly consists of the ground truth. Therefore, our reported
FID scores are lower than those of the other generative models
[56].

Table II shows the quantitative results on three datasets with
mask ratio (0.1, 0.2], (0.3, 0.4], and (0.5, 0.6]. Our method
produces excellent results and achieves the highest scores
for all indicators in the Places2 and Paris StreetView. In
particular, our model outperforms the other benchmarks by
a large margin in the large hole case, whereas the recorded
scores are compatible with our counterparts in the small hole
case, thereby demonstrating the robustness of learning in an
irregular hole-filling process.

C. Analysis of Progressive Generator

The progressive hole-filling scheme inherently assumes
that once the global context is completed at an easier low-
resolution, the model gradually adds texture details by enlarg-
ing the resolutions. During the training, all layers in the PRN
were synchronized across the pre-processed resolutions early
in the training. Therefore, the quality of the generated images
is subsequently improved at all scales simultaneously. Fig. 1
shows the completed images at all resolutions. We can observe
that global semantics at the lowest resolution are maintained
throughout the training procedure, and the PRN incrementally
improves the details across the different resolutions.

Furthermore, we investigate the influences of different val-
ues of N , which determine the number of input resolutions.
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Fig. 6. Qualitative comparisons of Places2 dataset (please zoom in to see the detail).

Fig. 7. Qualitative comparisons of Paris StreetView dataset (please zoom in to see the detail).

Fig. 8. Qualitative comparisons on CelebA-HQ dataset (please zoom in to see the detail).

Empirically, we set N to 4, 5, and 6, and the corresponding
multi-resolution images are embedded in the PRN, i.e. the low-
est resolution is 32×32, 16×16, and 8×8, respectively. Table

III shows the results for the CelebA-HQ dataset corresponding
to different N values after the same training iterations with a
mask ratio of 30-40%. This ablation study reveals that our
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TABLE II
QUANTITATIVE COMPARISON ON THREE DATASETS. THE BEST MEASURES ARE IN BOLD. † A LOWER VALUE IS BETTER. ∗ A HIGHER VALUE IS BETTER.

Dataset Places2 Paris StreetView CelebA-HQ
Mask Ratio 10-20% 30-40% 50-60% 10-20% 30-40% 50-60% 10-20% 30-40% 50-60%

Meanl†1

EdgeConnect 0.0157 0.0408 0.0821 0.0110 0.0281 0.0582 0.0086 0.0239 0.0551
PConv 0.0154 0.0426 0.0874 0.0123 0.0313 0.0623 0.0081 0.0234 0.0524
GatedConv 0.0150 0.0397 0.0814 0.0120 0.0309 0.0660 0.0085 0.0240 0.0541
RFR 0.0142 0.0381 0.0761 0.0110 0.0275 0.0546 0.0071 0.0209 0.0467
Ours 0.0139 0.0368 0.0754 0.0118 0.0265 0.0544 0.0079 0.0214 0.0463

PSNR∗

EdgeConnect 27.17 22.18 18.35 31.19 26.04 21.89 32.76 26.52 22.28
PConv 27.29 22.04 18.07 30.76 25.46 21.39 32.84 26.84 22.27
GatedConv 27.18 22.31 18.39 31.32 25.52 20.61 32.56 26.79 22.08
RFR 27.78 22.63 18.92 31.71 26.44 22.40 33.71 27.83 23.03
Ours 28.01 22.69 18.98 31.48 26.83 22.71 33.49 27.61 23.17

SSIM∗

EdgeConnect 0.933 0.802 0.553 0.950 0.849 0.646 0.965 0.915 0.759
PConv 0.934 0.812 0.519 0.947 0.835 0.619 0.966 0.922 0.791
GatedConv 0.933 0.803 0.555 0.953 0.849 0.621 0.963 0.914 0.767
RFR 0.939 0.819 0.596 0.954 0.862 0.681 0.982 0.934 0.819
Ours 0.941 0.824 0.603 0.960 0.867 0.699 0.987 0.941 0.831

FID†

EdgeConnect 2.42 9.05 15.39 2.38 8.97 15.29 2.27 8.83 15.15
PConv 2.44 9.16 15.52 2.36 8.89 15.32 2.32 8.75 15.28
GatedConv 2.40 9.07 15.47 2.33 8.93 15.33 2.29 8.80 15.21
RFR 2.31 8.91 15.35 2.29 8.68 15.09 2.18 8.63 15.06
Ours 2.28 8.86 15.17 2.26 8.60 15.08 2.03 8.58 14.98

TABLE III
INFLUENCES OF DIFFERENT N RESOLUTIONS. † A LOWER VALUE IS

BETTER. ∗ A HIGHER VALUE IS BETTER.

N 4 5 6

SSIM∗/ FID† 0.730/15.51 0.858/8.72 0.862/8.65

model is robust to changes in this parameter when N is set
to 5 and 6. The results also show an improved performance
compared with previous methods. However, when N is set to
4 and the lowest resolution is set to 32× 32, the quantitative
scores are dramatically decreasing. This can be interpreted
that the 32 × 32 resolution is insufficient for the model to
comprehend the global context first, owing to the limited size
of the receptive filter. Therefore, N should be greater than 4
to ensure a sufficient visual quality of the completed images.

D. Analysis of Pixel-wise Dense Detector

In this section, we verify the effect of the PWDD, which
helps the generator focus more on the generated region by
introducing the newly formulated adversarial loss. To do this,
comparisons are conducted from all images on the Paris
StreetView and CelebA-HQ datasets.

Effectiveness of Pixel-wise Dense Detector: We first test
our proposed PWDD by comparing its performance with two
representative discriminators. One is the RED, which is newly
introduced in PEPSI++ [11] for image inpainting tasks. The
other is a discriminator from MSG-GAN (MSGD) [20], which
allows a multi-scale gradient flow for generative adversarial
networks. For fair comparisons, we employ each discriminator
on a PRN without a merge block for the baseline network.
As shown in Table IV, the proposed PWDD exhibits a better
performance in terms of the SSIM and FID compared to
existing discriminators.

TABLE IV
NUMERICAL COMPARISONS ACCORDING TO THE ABLATION OF DIFFERENT

DISCRIMINATORS. † LOWER IS BETTER. ∗ HIGHER IS BETTER.

Dataset Paris StreetView CelebA-HQ
Mask Ratio 30-40% 50-60% 30-40% 50-60%

RED SSIM∗ 0.849 0.624 0.897 0.771
FID† 8.97 15.55 8.99 15.38

MSGD SSIM∗ 0.842 0.631 0.901 0.785
FID† 8.90 15.49 8.93 15.33

PWDD SSIM∗ 0.850 0.643 0.907 0.805
FID† 8.77 15.31 8.84 15.26

PWDD
(+consistency)

SSIM∗ 0.854 0.650 0.929 0.813
FID† 8.73 15.25 8.82 15.18

To further demonstrate our PWDD, we show the qualitative
comparisons according to each discriminator in Fig. 9. The
examples show that the existing discriminators cannot provide
satisfactory feedback to generate visually plausible images.
They produce results with visual artifacts such as blurred or
distorted images in the masked region. Although they are
effective in the original studies, as the hole size becomes
larger, a global-critic is insufficient to generate texture details
into the deeper missing region. In contrast to the compared
counterparts, because the PWDD allows per-pixel feedback to
the PRN at a semantic level, the generator can maintain the
global and local realism.

Effectiveness of Consistency Regularization: The above
results show that the PWDD compares favorably with the
state-of-the-art approaches on public datasets and shows the
high potential of the reconstruction. However, the adversarial
loss implicitly guarantees these potential qualities. To enable it
explicitly, the PWDD should be regularized to focus more on
the semantic and structural changes in the masked region. To
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Fig. 9. Comparisons of RED, MSGD and PWDD (+consistency) on Paris
StreetView and CelebA-HQ datasets. The PWDD (+consistency) preserves the
contextual details better than our counterparts (zoom in to see the details).

inject this particular prior, we introduce the consistency regu-
larization in Eq. 18. This strategy stems from our observation
that consistency regularization [22] is most helpful for penaliz-
ing the per-pixel inconsistency prediction of the discriminator
under the CutMix transformations [57]. As shown in Table
IV, employing the proposed consistency regularization in the
multi-resolution confidence maps enables us to obtain the most
superior scores for our indicators and allows us to leverage
a better per-pixel feedback of the PWDD without imposing
much computational or memory costs. Overall, we observe that
consistency regularization leads to an improved visual quality
in terms of the quantitative indicators and qualitatively (Fig.
9).

Visualization of Confidence Map: With the help of
pixel-wise feedback, including consistency regularization, our
method brings a stronger restoration effect even in the case
of extremely large holes. Experimentally, we observe that this
provides a detailed and spatially coherent response to the PRN,
which leads to further improvement in the output quality,
as shown in Fig. 10. The brighter color refers to the pixel
confidence in the visible region and darker in the invisible
region. The influence of pixel-level feedback is significant
during the training procedure. Fig. 11 shows the confidence
maps of the finest resolution according to the training epoch.
Intuitively, we can find that the unnaturally blurry corrupted
region is recognized as fake by the PWDD during early
training and is corrected by the PRN throughout the training.
Therefore, at the end of the training epoch, the confidence
scores are similarly distributed for all pixels, which implies
that the visual quality of the newly generated region becomes
indistinguishable from the visible region.

TABLE V
NUMERICAL COMPARISONS ACCORDING TO THE ABLATION OF THE

MERGE BLOCKS. † A LOWER VALUE IS BETTER. ∗ A HIGHER VALUE IS
BETTER.

Dataset Paris StreetView CelebA-HQ
Mask Ratio 30-40% 50-60% 30-40% 50-60%

w/o Merge Block
(PRN)

SSIM∗ 0.854 0.650 0.929 0.813
FID† 8.73 15.25 8.82 15.18

w/ Merge Block
(Conv Layer)

SSIM∗ 0.857 0.662 0.936 0.819
FID† 8.68 15.22 8.71 15.08

w/ Merge Block
(Attention)

SSIM∗ 0.859 0.679 0.940 0.824
FID† 8.70 15.17 8.64 15.14

w/ Merge Block
(STM)

SSIM∗ 0.867 0.699 0.941 0.831
FID† 8.60 15.08 8.58 14.98

E. Analysis of Merge Block

In this section, we explore the ability of the merge block to
refine the multiresolution outputs of the PRN. We conduct ad-
ditional experiments combining multi-resolution images with
different techniques. The first benchmark is an intuitive ap-
proach that adopts fully convolutional layers. Therefore, we
replace the STM illustrated on the left side of Fig. 5 with
the transposed convolution layer with a feature concatenation.
The second benchmark employs the existing attention module
[23] to enhance the relevant features from scale to scale.
Considering the high computation cost, we introduce the
existing attention module up to a resolution of 32 × 32 and
replace the rest with the convolutional layers.

Effectiveness of Merge Block: We report in Table V
the SSIM and FID scores calculated over the four different
ablation models. Comparing the results with and without the
merge block, both indicators show higher marks when using
the merge block. This demonstrates that the merge block has a
robust capability for generating realistic images. The improved
scores of our model, which combines multi-resolution images,
indicate that the merge block plays a beneficial role in gen-
erating realistic images by directly supervising the semantic
correspondence between adjacent resolutions.

Effectiveness of Structural Transfer Module: To transfer
scale to scale information, we devise a STM that enables long-
range interaction by utilizing the linearly estimated function.
The STM outperforms the other benchmarks by a large margin,
as reported in Table V. Our experiments indicate that the STM
achieves a superior refinement layer that provides semanti-
cally coherent knowledge across different resolutions. Fig. 12
illustrates the final inpainting images of the three differently
constructed merge blocks. Compared to the benchmarks, the
STM results show semantically consistent patches inside the
missing region, which implies that the proposed module can
be properly operated as scale-matching features. To further
validate this, we visualize the structure similarity maps [58],
which are defined as

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (23)

where α = β = γ = 1 and l(x, y), c(x, y), and s(x, y) repre-
sent the luminance, contrast and structure maps, respectively,
following the original literature [58]. In our experiment, x
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Fig. 10. Examples of inpainting results and corresponding confidence maps. Brighter colors correspond to the discriminator of the pixel as real and darker
colors correspond to those as fake.

Fig. 11. Inpainting results throughout the training procedure and the corre-
sponding confidence maps.

Fig. 12. Comparisons according to different settings of the merge block
(please zoom in to see the details).

and y are the target and inpainting images x̃out, respectively.
Fig. 12 shows the magnified local region and corresponding
structural similarity maps indicating that a darker color shows
a loss of structure. These results demonstrate that the STM
can semantically generate reasonable and fine-detailed results
by aggregating contextual information through multiple reso-
lutions.

F. Addtional Analysis

Model Efficiency: As shown in Table VI, the proposed
model (with PRN and merge block) has fewer parameters
than the widely used PConv [32], GatedConv [48], and RFR
[33]. Specifically, we require less memory but have higher
FLOPs than PConv due to unoptimized long-term interaction

TABLE VI
MODEL EFFICIENCY OF DIFFERENT NETWORKS AND THEIR QUANTITATIVE

PERFORMANCES ON CELEBA-HQ DATASET OF 40%− 50% MASK. M IS
SHORT FOR MILION.

Method Metrics Efficiency

PSNR∗ SSIM∗ FID† Params FLOPs

PConv 25.32 0.8803 10.73 26M 19G
GatedConv 25.78 0.8917 10.08 27M 138G
RFR 26.91 0.9062 9.92 31M 206G
PRN(Ours) 27.03 0.9148 9.30 19M 22G
+Merge Block(Ours) 27.28 0.9204 8.90 21M 40G

TABLE VII
DETAILED COMBINATIONS OF THE OBJECTIVE FUNCTIONS.

Configurations Metrics
Ladv Lapp PSNR∗ SSIM∗ FID†

Hinge Loss (w/o Lcons
Dp

) Lrec 26.70 0.9115 9.58
Hinge Loss (w/o Lcons

Dp
) Lrec + Lvgg 27.27 0.9153 9.44

Hinge Loss (w Lcons
Dp

) Lrec 27.41 0.9183 9.32
Hinge Loss (w Lcons

Dp
) Lrec + Lvgg 27.28 0.9204 8.90

WGAN-GP (w/o Lcons
Dp

) Lrec 24.51 0.8948 9.85
WGAN-GP (w/o Lcons

Dp
) Lrec + Lvgg 25.96 0.9033 9.74

WGAN-GP (w Lcons
Dp

) Lrec 25.84 0.9162 9.80
WGAN-GP (w Lcons

Dp
) Lrec + Lvgg 26.03 0.9149 9.73

implementation, e.g., merge block. On the other hand, PConv
is based on CNN which is a highly optimized computation. In
addition, the inference time of our model (PRN+merge block)
for each image is usually between 72 and 84 ms, which is
also faster than several benchmarks. Considering qualitative
results and model efficiency simultaneously, we can conclude
that the proposed model efficient than several state-of-the-art
methods.

Specific Setting of Objective Function Combinations:
As shown in Eq. (12), the proposed loss function can be
divided as Ladv and Lapp. In particular, Ladv consists of
conventional adversarial loss LDG

and PWDD term LDP

(with and without consistency regularization LconsDp
), and Lapp

includes reconstruction loss (Lrec = Lv + Lh + Lr) and
VGG loss (Lvgg = Lp + Ls). Table VII shows qualitative
scores for various loss function combinations on CelebA-HQ
degraded by 40% − 50% mask ratio. Here, we compared
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Fig. 13. Additional resutls on DAVIS dataset for object removal. All results are reported at 432× 240 resolution.

two conventionally used adversarial losses which are hinge
loss and WGAN-GP [59] and applied Adam optimizer for
all combinations with the same learning rate. Each weighting
hyperparameters was set according to the previous studies
[11], [12]. In our model, the hinge loss was the best fit, and
a noticeable improvement in perceptual metrics was observed
when the VGG loss was added.

Additional Visualization: Moreover, we study important
real use case of image inpainting. In Fig. 13, we illustrate
some examples for object removal using a DAVIS dataset [60].
Our model works well on the natural and outdoor scenes and
could synthesize sharp and clear appearance by preserving the
background textures in invisible or occluded regions.

V. CONCLUSION

This paper presents a novel progressive image inpainting
scheme that integrates a progressive generator, pixel-wise
dense detector, and merge block. With the help of the col-
laborative functionality of the three proposed networks, the
completed images show visually plausible results even in a
large hole. The evaluation results demonstrate that our method
exhibits a superior performance on diverse datasets, which
implies that our method has significant potential for practical
applications.
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Reviewer: 1
We’d like to thank the reviewer for their valuable remarks, which we used to upgrade the manuscript. After careful consideration,
we have revised our paper accordingly. Our answers follow each italicized copy of the reviewer’s comments, explaining how
we have changed.

Specific Comments:

1. In RGB color space, have tried other color space, e.g. YUV?

Answer: Thanks for the constructive comment. As the reviewer indicated, we did not compare image inpainting results regarding
various color spaces, because previous literatures related with this field [9], [11]–[13], [33] have only dealt with the RGB color
space. To reflect the reviewer’s suggestion, an additional test was conducted to verify the effectiveness of the proposed model
over different color spaces. In Table VIII, quantitative scores are tabulated in accordance with various color spaces (e.g., YUV,
HSV, and HED) by employing the model trained with RGB images. The scores are calculated for all images in Paris StreetView
given the mask ratio of 30% − 40%, and then the result shows that the best performance is achieved with the RGB color
space. It is noteworthy that even though our model was trained on the RGB space, but the completion performances on the
other color spaces are almost equivalent.

TABLE VIII
COMPARISON OF QUANTITATIVE SCORES ON DIFFERENT COLOR SPACES.

Color space Meanl†1 PSNR∗ SSIM∗ FID†

Y UV 0.0294 26.28 0.859 8.86
HSV 0.0338 25.94 0.862 8.95
HED 0.0372 25.50 0.847 9.71
RGB 0.0265 26.83 0.867 8.60

2. How did you set the weighting parameter λc in Eq. (19)?

Answer: Thank you for mentioning the important question of scaling. In fact, the prior scaling of the objectives (λc) is
necessary, not optional. But we missed out specifying the weighting parameter atthe initial submission. As the reviewer
knows, such weighting parameter totally depends upon the stochastic processes based on the sampled data and their derivatives
according to the objective functions, thus it is hardly determined in an analytic way. Therefore, we found the optimal weighting
parameter by increasing the number discretely, i.e., λc = {0.01, 0.05, 0.1, 1.0}. Empirically, λc = 0.1 was the optimal value
in terms of both performance and model stability. To address the reviewer’s concern, we stated it clearly in Section III-B.

3. The groundtruth should be provided in Fig. 6, 7, and 8 for better visualization.

Answer: This is a constructive comment. Our concern was that showing the original image may hinder the understanding
of the major contributions. By adopting a multiscale completion framework, even corrupt images with large missing holes
can be covered by our generative model. That is, the images completed from large holes may be statistically different from
original images. This is why we did not visualize ground-truth in the initial version. We agree with the reviewer’s opinion,
thus ground-truth images were added to Figs. 6-8.
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Reviewer: 2
We’d like to thank the reviewer for their valuable remarks, which we used to upgrade the manuscript. After careful consideration,
we have revised our paper accordingly. Our answers follow each italicized copy of the reviewer’s comments, explaining how
we have changed.

Specific Comments:

1. To provide a complete view of the inpainting community, please include the discussions of the following recent papers.
[1] Dynamic selection network for image inpainting, TIP 2021
[2] PD-GAN: Probabilistic Diverse GAN for Image Inpainting, CVPR 2021
[3] Image Inpainting Guided by Coherence Priors of Semantic and Textures, CVPR 2021
[4] Edge Guided Progressive Generative Image Outpainting, CVPR 2021

Answer: Thanks for the constructive comment. We sincerely reviewed all the papers above and added the discussion of them
to the related work section. However, we are cautious with including the diverse image inpainting task (PD-GAN: Probabilistic
Diverse GAN for Image Inpainting) to our previous categories. In our view, the mainstream of image painting seems to be
divided into two ways: providing a detailed deterministic solution and providing a diverse solutions through noise sampling.
Our attempt is closer to the former. To address the reviewer’s concern, we newly added the detailed sub-section (Pluralistic
Image Inpainting), and discussed the following papers.
[1] Pluralistic Image Completion, CVPR 2019
[2] UTCGAN: Diverse Image Inpainting based on Unsupervised Cross-Space Translation, CVPR 2020
[3] High-Fidelity Pluralistic Image Completion with Transformers, arXiv 2021
[4] In&Out: Diverse Image Outpainting via GAN Inversion, arXiv 2021

2. Please compare the method’s efficiency (e.g., PARAMS, FLOPS, FPS) with the baselines. Which part is the bottleneck?

Answer: Thanks for the constructive commentary, and we agree with the reviewer’s comment that adding the analysis of model
efficiency might help the reader to understand our strengths. According to the reviewer’s comment, we further compared the
model efficiency with qualitative scores in Section IV-F. The result shows that our model is cost-efficient design rather than
most state-of-the-art networks except PConv [32]. Here, PConv is a network consists of pure convolution and element-wise
operations implemented as a highly optimized computation. On the other hand, recent works including our model requires
much more matrix operations to capture the long-term interactions of features. Please note that our model costs about half
FLOPs of the attention-based models, but achieves superior qualitative performance.

3. The ablation studies mainly focus on the model design. Please conduct ablation studies on the loss functions. In fact,
there are lots of loss functions with weighting coefficients that need to be tuned, which degrades the model’s generality.

Answer: Thanks for making a careful reading of our paper. With the reviewers’ constructive comments, we are confident
that our paper can be enriched experimentally. In Section IV-F, we evaluated the performance of loss function by studying
various combinations. Specifically, our final object function can be divided into Ladv(G,D) and Lapp(G) as represented in
Eq. (12). Following the reviewer’s comment, we conducted ablation studies to find the best loss function setting and weighting
parameters (please note reviewer1 question2).

4. I see the model trained and tested in 255× 255. Up to what scale the model can perform inpainting? In other words,
can the model perform well with higher resolution images? Please conduct quantitative experiments.

5. Including several qualitative examples on actual uses cases. For example, the authors can apply the model on COCO
or VOS dataset to erase the objects. In this way, we can compare the methods with other baselines qualitatively at least.

Answer: Here, we reply both comments 4 and 5. Thank you for these valuable comments. As the reviewer indicated, it is
necessary to validate what scale the model can perform inpainting. Toward this, we visualize additional examples in Section
IV-F. To be honest, the proposed model showed the competitive performance up to 5122 resolution. However, our model was
insufficient to cover HD or UHD size. In our view, the main issues for completion of higher resolution are that the memory
usage becomes intractable and long-term interaction in the feature space deteriorates rapidly when the input size is up to
8K. Now we are planning the next study on high-resolution image inpainting, and we hope that the qualified results will
be achieved and the detailed analysis can be conducted in the next study. Furthermore, to visualize actual uses cases as the
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reviewer commented, we utilize DAVIS dataset which contains high-quality videos with object-like mask. Please refer newly
added Fig. 13.
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Reviewer: 3
We’d like to thank the reviewer for their valuable remarks, which we used to upgrade the manuscript. After careful consideration,
we have revised our paper accordingly. Our answers follow each italicized copy of the reviewer’s comments, explaining how
we have changed.

Specific Comments:

1. The idea of “Pixel-wise Dense Detector” has been discussed and proposed in earlier papers. While I did not track
whether they have been accepted to any venues, they have discussed very similar ideas as the Pixel-wise Dense Detector
as presented in this paper. In the first paper [1], its name is ”Pixel-wise Dense Detector for Image Inpainting”, therefore,
I believe these papers need to be carefully discussed.
[1] https://arxiv.org/abs/2011.02293
[2] https://arxiv.org/abs/2104.01431

Answer: Thank you for this valuable comments. After sincerely reviewed the mentioned two papers, we realized the seriousness
of the problem. To be honest, we did not be aware of the two papers when we were writing our paper. We were also embarrassed
when we encountered the title of the first paper which is exactly the same as our pixel-wise dense detector. However, after
careful review, we are convinced that our proposed approach is completely different from the above two papers (the detailed
are below). Nevertheless, since the title may lead to a major misunderstanding in the future, we would like to change the
title to “Progressive Contextual Aggregation Empowered by Pixel-wise Adversarial Confidence Scoring” if the reviewer agrees.

One of the major remaining challenges in image synthesis tasks is the ability to recover globally and locally consistent images
with object shapes and textures indistinguishable from ground-truth images. To address this issue, it is a well-known approach
to provide detailed per-pixel feedback to the generator while maintaining the global consistency of synthesized images, by
providing the global image feedback as well. Please note “A U-Net Based Discriminator for Generative Adversarial Networks”.
In this paper, the authors proposed U-Net based discriminator which allows providing the detailed per-pixel feedback to the
generator with the modified adversarial loss. In our view, the commented papers might be inspired by this paper. To reflect
the reviewer’s suggestion, we carefully discuss the differentiations between the model in Section II.

Furthermore, the proposed architecture and the models of the above two papers were re-drawn to help easy understanding.
As shown below Figures (a) and (b), the studies noted by the reviewer assume that a conventional encoder-decoder structure
performs both roles: high-level recognition and low-level pixel synthesis. However, this is still insufficient to fill the extremely
large hole because the correlation between neighboring pixels is weakened in the feature level. To this end, most SOTAs [15],
[16], [33] adopt an alternative scheme that fills the hole from the boundary to the center recursively. However, this recursive
process easily suffers structural discontinuity problems since it directly maps the extracted feature map into the RGB space
repeatedly. Therefore, we adopt the progressive hole-filling strategy which fills the region starting from the low- to the high-
resolution regarding both image and feature levels simultaneously, as shown in below Figure (c). Therefore, using a multi-scale
framework as an advantage, the proposed discriminator further reinforces the potential quality of synthesis by passing gradients
to all the scales. This scale-wise per-pixel critic loss helps our model more focus on the newly completed region at each stage,
and then the overall visual quality can be dramatically improved.

https://arxiv.org/abs/2002.12655
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2. Progressive learning has been commonly used in inpainting as well since the non-deep learning era. How could the
progressive learning boost the results comparing to merely using PWDD in one scale? In section III-B, using PWDD in
an adversarial loss is roughly mentioned, but how exactly this was used in a progressive training setting? My best guess
is that you are using one adversarial loss for each scale as you mentioned {c1, c2, ..., cN}.

Answer: Thanks for making a careful reading of our paper. This is a valuable comment. Before discussing the contribution of
the pixel-wise dense detector (or pixel-wise confidence scoring) in our model, we would like to briefly remark the discriminator
in the generative adversarial network (i.e., generative model). To enhance the quality of generated samples, there are a lot
of works focusing on improvement of the discriminator by exploiting multiple and multi-resolution discriminators. As the
reviewer knows, PG-GAN is a representative study employing multi-resolution discriminators which proposes a curriculum
learning strategy to gradually increase the resolution of the generated images. With a success of this strategy, many SOTA
methods including StyleGAN, SinGAN, and HRFC had adopted multi-resolution discriminators and had achieved superior
performance.

Much like PG-GAN, MSG-GAN notes that multi-scale gradients account for a remarkable improvements to generate
perceptual images. Unlike PG-GAN works, MSG-GAN allows the discriminator to look at not only the final output (highest
resolution) of the generator, but also at the outputs of the intermediate resolutions. As a result, the discriminator becomes a
function of multiple scale outputs and importantly, passes gradients to all the scales to the generator simultaneously. There
are several advantages to adopting this strategy. Compared to multi-resolution discriminators which cannot share information
across scales, MSG-GAN allows the gradients to flow at multiple resolutions making the task being explicit. Besides,
this approach is free from additional constraints (e.g., an external color consistency regularization in StackGAN). Recent
SOTA studies demonstrate that adopting a multi-scale feedback framework is more powerful to produce visually plausible
results in comparison to utilizing a single-scale discriminator in the image synthesis fields (StyleGAN2, AnycostGAN and TFill).

However, in our view, a discriminator being a Bernoulli classifier is insufficient to identify the most discriminative difference
between real and synthetic images. Since the previous discriminators criticize the generator using a single average score over
holistic image or local patch, they are often biased to understand the global context which are not incentivized to enforce
local consistency in the predicted image. That is, it is easy to lose local details when an environment is non-stationary that
the synthesizing process varies randomly through training. To mitigate this problem, we propose an alternative discriminator
architecture (PWDD), which provides both per-pixel (across all the resolution) and global (global score) decision over images
to generator (please check above Figure (c)).

As the reviewer indicated, our generator is trained by their corresponding per-pixel feedback using a single adversarial loss
for each scale ({c1, c2, ..., cN}). Empowered by the per-pixel response of the PWDD, we further propose a consistency
regularization, penalizing inconsistent prediction (please refer to Eq. (18)). By taking a role of both classifier and segmenter to
PWDD, the completed results are boosted to preserve globally and locally coherent texture components than other benchmarks.
Our contribution is that the proposed model not only passes the gradient flow to all scales through backpropagation but also
scores the confidence by identifying whether the pixel is masked or not. By this, the discriminator is encouraged to maintain a
more powerful representation. To address the reviewer’s concern, we conducted additional rigorous simulations to demonstrate
the effectiveness of the PWDD (or PWACS). First, we additionally implemented a single-scale discriminator with pixel-wise
critics following the previous work, SingleScale. Specifically, only the final resolution image is passed through the discriminator.
As shown in Table IX, PWDD with consistency shows superior performance for SSIM and FID on the Paris StreetView and
CelebA-HQ datasets.

TABLE IX
COMPARISION OF QUANTITATIVE SCORES ON DIFFERENT DISCRIMINATORS.

Dataset Paris StreetView CelebA-HQ
Mask Ratio 30-40% 50-60% 30-40% 50-60%

SingleScale SSIM∗ 0.837 0.633 0.890 0.794
FID† 9.17 16,58 9.34 15.81

PWDD SSIM∗ 0.850 0.643 0.907 0.805
FID† 8.77 15.31 8.84 15.26

PWDD
(+consistency)

SSIM∗ 0.854 0.650 0.929 0.813
FID† 8.73 15.25 8.82 15.18

https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1905.01164.pdf
https://arxiv.org/pdf/1801.07632.pdf
https://arxiv.org/pdf/1903.06048.pdf
https://arxiv.org/pdf/1612.03242.pdf
https://arxiv.org/pdf/1912.04958.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Lin_Anycost_GANs_for_Interactive_Image_Synthesis_and_Editing_CVPR_2021_paper.pdf
https://arxiv.org/pdf/2104.00845.pdf
https://arxiv.org/abs/2011.02293
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3. The lambda net is a great paper and it’s great to see the inpainting work could leverage the lambda net. However, the
contribution of the merge block is not clear given the experimental results. Even though I’ve zoomed hard to check out
Figure 9, the differences are minor between PWDD and PWDD (+consistency). I understand that metric-wise, the merge
net gives a slightly better score, however, what are those structures that could be corrected through this merge block? if
not, then it is confusing to claim this merge block as one to address the structural discontinuity issues. Becauses at each
resolution, an input of that resolution (downsampled from the original input) is fed into the network, so this in not a strict
recursive setting. It might be possible that the structural discontinuity is not severe in this case.

Answer: Thanks for the valuable comment. Above all, Fig. 9 in the draft is not an ablation study for a merge block but an
ablation for PWDD (we have already discussed it at above comment), and the mentioned visualization is perhaps Fig. 12
which shows the effectiveness of the merge block.

As the reviewer mentioned, the lambda net is a great paper. This paper presents a computational efficient method to reflect
long-range interaction. Here, the lambda layer drops nonlinearity from the original attention operation and makes the matrix
multiplication be independent to the context. Hereby, the model is able to avoid expensive computation and burden to store
the large attention maps. By leveraging the lambda layer, our key contribution is the propagation of the long-range interaction
between adjacent resolutions. For better understanding, the proposed generator consisting of two independent networks has
been redrawn below. The proposed framework is a kind of coarse-to-fine refinement approach.

Specifically, the progressive generator initially fills the hole starting from the lowest resolution to the highest resolution. After
that, the merge block blends the multi-resolution completed images to construct the final output. Unlike the lambda layer which
extracts query, key and value from the same context (like self-attention), our STM is utilized at each different resolution as
query, key, and value to enable scale-to-scale information transfer as shown in right side of the below figure. By utilizing
the proposed merge-block, a series of lambda layers can be improved in terms of 1) exploiting a multi-scale architecture to
reduce computational cost for generation of high-resolution images, and 2) sequentially conveying coarse features (from lower
resolution) to finer level (i.e., to adjacent higher resolution) where each block learns the region affinity between neighboring
resolutions. Therefore, our merge block is robust in preserving structure continuity, as it gradually refines the global structure
from the lowest resolution. As tabulated in Table VI, by adopting the merge block, we achieved a 5.59% gain of SSIM score
compared to the other models using only convolutional filters on the Paris StreetView dataset. We visualize additional results
below. As shown in figure, without the merge block, the resulted images degraded by some boundary artifacts. This is because
the inconsistent feature maps across the different resolutions, and which might lead shadow-like artifacts. After the feature
merging process representing the feature interaction between adjacent resolutions, the proposed model is able to refine the
structure discontinuity with having clear textures even in cases of a large hole.

https://openreview.net/pdf?id=xTJEN-ggl1b
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